DATA-DRIVEN

CHARACTER SYSTEM

Content

NATOUIN G 0T oo SOOI o PP e e oo O I PO O PR PEAED rcrcrccorcr-oocoonn 5
SYSIEM DEVEIOPIMENT ...ttt ettt e st et e s te e s e s beeaa e sesbeensestessaensesseessenseennes 7
B2 = o] 1= 9
(O T (=] gl D L TSR 9
CharaCter ALTDUIIESeoeee ettt ettt et sr et e e enteaeeseensesneenees 10
VAT ToLo T D - U O PTSPPTR 11
SUEHIBALE. ... S B . Tn NS R 12
ATEACK PAITICIES ...ttt sttt e st e e e s teese e e e sseenaesseeneensesneenes 13
CEMMEIE (DA oomsooaiooodiioocotiioomooomoosooot b noc00 o dhoatuo00u00000000000000000000000000003000000000000000008 13

AR AT ... SN S ... TS —— . ———— 14
ACLOr IMPIEMENTALION ...ttt ettt et et e e ae s e e steeaaenbeeasesesreensestensnans 15
CONSLIUCTION SCHIPL .. viveeeeeeieeeetiete ettt te ettt s e et et e estesteebesteesaebeensessesbeessesseensensesreensessenneas 15
CUSTOM EVENES ...ttt ettt ettt st et e bt e sbe e sae e satesateeabeebe e beesaeesanesaeesntenn 16
EXECULECUSIOMENVENTc..eiiiieieeteeteete ettt sttt st st ssteebeesbaesaaesaneens 17
CallCUSLOMEVENLccvevterrerinrerieresessessestenseseesessnesessessesseseensessassssnessssessessestessessasssssessesasasssases i
CAlIAICUSTOMEVE D es:. . 2F..... 0 S0 | SRS 1 ST | 17
ACLOrs With Player CONIOIIENooueeieeceeeeee ettt ettt ae s be s aesanenes 17
ACtors Without Player CONIOIIENcuovieieiececeee ettt 18
Ripelinel...... S S e S T S S 19
ANNEXES ANA RETEIEINCESeeverieerieriertistertirtertsrtsre st eestestessestesesseesesstesessessessestensessesasssenessessassessens 21

Figures

Figure 1 - Inheritance system for the CRaraCterscooviieieeieireece ettt ere e ereeveereen 5
Figure 2 - Data-Driven System UML DIagramccoceevieiieiieriieierieseetesteeeesvesreesseseesaessesseesessessnens 8
Figure 3 - Representation of CharacterData variablescoccoereieiiienininereeeeeeeeee e 9
Figure 4 - BUllet ONHIt AEIEGALE.eeeeiieeieiecteeteste ettt ettt sttt e re et e s beeaesteeraeaeereenes 12
Figure 5 - ConstructionScript, BIUueprint diagramcccoeverereriinieieinneseseseeeee s 15
Figure 6 - ExecuteCustomEVvent implementationcoevererierieieieinesese e 16
Figure 7 - CallCustomEvent implementationc.cccvcveviieieiieieececeeeee et 16
Figure 8 - ExecutieAlCustomEvent, behavior tree exampleccooeeirineneneneneeeeeese e 16
Figure 9 - Custom Task implemeNntation............ccveciiiieieiiciee et e 17
e O R [O N o o 20

file:///C:/Users/Gerlogu/Desktop/⠀/Germán/CharacterSystem-EN.docx%23_Toc119184552
file:///C:/Users/Gerlogu/Desktop/⠀/Germán/CharacterSystem-EN.docx%23_Toc119184553
file:///C:/Users/Gerlogu/Desktop/⠀/Germán/CharacterSystem-EN.docx%23_Toc119184560

Tables

Table 1 - CharacterData Variables.........c..oovieovieeiiieiececee ettt ettt et v eve et as 10
Table 2 - Character AtribUtteS VAriabIEScc.eeoviiiieiiecieceee ettt ere v v 10
Table 3 - WeaponData VAriabIES..........coiieieriiieeseeese ettt see s eaeseeeneens 11
Table 4 - BUHIEtDAta VariabIEsooviiueiieierieeteeeteece ettt ettt et et et e eaaesaveeareebeenteeees 12
Table 5 - AttaCKPartiCles VAriabIEScooueiieviiiiee ettt et e e eeaee e enreeeeanes 13
Table 6 - CameraData VariabIES..........c..eo ittt et e re e eaees 13
Table 7 - AlDAta VArIADIEScoveiieicteeceee ettt ettt ettt et et e e eteesteeeaaesareenbeebeenseenes 14
Table 8 - EXeCUteCUStOMEVENT VATIADIESooovieiieeeeeee ettt et e eanes 17
Table 9 - CallCUStOMEVENT VAADIEScveevieieeetiecteecee ettt et eere et ebeeveeveennes 17
Table 10 - CallAICUStOMEVENT VATIADIESoooiieieieeeeee ettt et e eeanes 17

Motivation

Currently, for the coding of the characters in Howl of Iron we have made use of a hierarchy
based on inheritance, where there is a HICharacter that inherits from the default Character class of
Unreal Engine 4. This HICharacter class is the one that contains the common functions and variables
for all the characters in the game, such as life or movement speed.

From this class, the HIWerewolf actor (the player-controlled character) and the HIEnemy class
are born. This last class is the one that gives rise to the different enemies in the game, and it is the one
that contains the specific functions and variables of the enemies.

A UML diagram with the different branches is shown in Figure 1 below.

HICharacter

+ Name:FString = "Defaull Name"
+ Heallh:float
- 3 type

+ Move(Fvector3 direction, float quantity)
+ TakeDamage(HilResull hiunfu, flual intentedDamane)
- operalien3()

HiWerewolf HIEnemy

Mutton Owiman Hunter Boss

Figure 1 - Inheritance system for the characters
However, the use of this system has led to the following problems:

= Variables scattered in different locations.
> As all the variables of the characters are not included in a single place (either in a
DataTable or in a DataAsset), as they are specific to the parent class or unique to the
different children, this has caused that there is not a single place where the variables
are located, complicating the design work.
> Currently there are 150 variables in 32 different places (More information here).
= Limitation in prototyping
> Many of the character behaviors are programmed in C++.
> While, many of the events are called in Blueprints, there are a number of conditions
between parents and children. These problems are mainly found in the development of
the Al since, as Unreal Engine components such as Al Perception are not being used
as a base, this complicates the prototyping of a new character, always requiring the
support of a programmer to make a character from scratch.

For these reasons, this document proposes a partially different system, where a Data-Driven
workflow will be followed, but keeping some of the characteristics of the current system.

For this purpose, the characteristics of this system will be discussed below, followed by its
implementation and, finally, analyzing the Pipeline to be followed for this new system together with
different practical examples.

System Development

This system requires the creation of the following variables by the programming team:

= CharacterData (DataTable)
> DataTable with all the attributes that make up a character.
> The actor has a public variable that receives a reference to the DataTable containing
the parameters, which are processed in the ConstructionScript giving rise to the
character in question.
= CharacterAtributtes (DataAsset)
> DataAsset that possesses all the status attributes of a character (health, movement
speed, gravity, etc.).
= WeaponData (DataAsset)
> DataAsset that has all the attributes with respect to a weapon that a character may
POSSeSS.
= EWeaponType (Enum)
> Enumerator representing the type of weapon to be used.
> States: Melee, Firearm
= EWeaponGripType (Enum)
> Enumerator representing the handling of the weapon.
> States: None, One-Handed, Two-Handed, Dual-Wielding
= EHandType (Enum)
> Enumerator representing the hand with which the actor grasps the weapon.
> States: Left, Right, Both
= BulletData (DataAsset)
> DataAsset that has all the attributes relating to a firearm bullet.
= EBulletType (Enum)
> Enumerator representing the type of bullet used by the weapon to detect enemies.
> Estados: LineTrace, Bulletinstance
= AttackParticles (Structure)
> Data structure containing all the attributes of a particle system.
= CameraData (DataAsset)
> DataAsset with all the attributes of the character's camera in case the character is
controlled by the player.
= ECameraType (Enum)
> Enumerator representing the type of camera implemented by the actor.
> States: NormalCamera, CinematicCamera
= NormalCameraData (DataAsset)
> DataAsset with the attributes of the normal camera.
= CinematicCameraData (DataAsset)
> DataAsset with film camera attributes.
= SpringArmData (DataAsset)
> DataAsset with the attributes of the camera arm.
= AlData (DataAsset)
> DataAsset that has all the parameters and conditions of the character's Al in case it is
not controlled by the player.
= AlPerceptionData (DataAsset)
> DataAsset that contains all the information concerning the AlSense component of the
Al.

wEnumerations

EBulletType

«Datapssets
CharacterAtributtes

+ Hazalitfiuar
+ Resistance:float

+ Walking! cd-float
ingSpeectfioat

«Datafssets
CharacterData

+ CharacterAtributtes:CharacterAtibutest
+ Weapons:WeaponDaia*(0.."]

+IsControlled: ool
+ CameraData CameraData HiCharacter HiCharacterinterface

+ Mesh SkeletalMeshComponent* - Character CharacteiDaia” o] * ee(uectos piresion float Quantity)
.

i

wilyScale lloal
elerationfioat
Frictan:float

HealthPerceniage float
ot

«DataAssCl
WeaponData

+ WesponType:EVieaponTyne

«Enumeration»
EWeaponType

hieiee
Fiream

«Datahssats
BulletData

LineTrace
Gullerinstance

HiBullet

+ BullerBulletDara*

~ BulletType: CBulletType
- toal

«Enumeration
EWeaponGripType

- OnTriggerEnter()

None
One-Handed
Two-Handed

DualWielding

«Strusren
Attackparticles.

EHandType
Left
Righ
Bath
<DaaAsset:
CameraData
ECameraType + CameraType ECameraType

NormalGamera
nemaicCamers

| + NormalcameraData: NomalCameraData®
+ CinematicCamerabata CinematicCameranata®

ucl

+u: b
+ SpringAmData: SprngAmiata!

NormalGamerabata

+ FieldOneusfiost
- ConstrainAspeciRatoboal

CinematicCameraData

Focall ength-float

= Aperrefloat

«Dalahssats
SpringArmData

TargetArmLength:foat

~ SockelofisetFyectara

<DataAssats
AlPerceptionData

~visionDistance foat
= WisiunDegrees FRol

Rolator

aDatasssets
AlData
+ BlConloller oller
2ok .

+ UselPerception bool
+ AlPerceptionData:AlPcrecptionData*

””””” 2| + ChangeWsapen(int Weaponindex)
ult Hiunfa, foat

+ AddHealih(fina healthToAdd)

- Dief)

+ Stunhontages:AnimMontage-(d... /]
+RelativeTransfomm FTranstorm®

+ AlDataAlDatar

+ GustomComponents: ActorComponentd...*]

An HICharacter class will be generated that will implement an
HICharacterlInterface interface that will contain all the basic functions (public
and private) of the actor.

This class will have a public variable CharacteriD of type
DataTableRowHandle that will receive the reference to the row of the
DataTable where the desired character is located.

In addition, there will be a private variable CharacterData that will contain all
the parameters of the character. This structure will be initialized in the
ConstructionScript in order not to read the DataTable every time a variable is
needed.

Within the parameters that exist in the DataTable, there are references
to a hierarchy of DataAssets that serve to categorize the large number of
variables that make up this system.

In the diagram, the "..." represent that the DataAsset contains all the
parameters corresponding to the component to which it refers.

In addition, a representation of the operation of the system and the
DataTable has been made in Excel.

CHECK OUT EXCEL EXAMPLE

Figure 2 - Data-Driven System UML Diagram

https://docs.google.com/spreadsheets/d/1utaUeeIQmFuR2cDQxWkPoPE18zaAjv3cFZg_IQzPF6g/edit?usp=sharing

Variables
Character Data

CharacterData is a data structure that contains all the variables of a character. From this
structure a DataTable will be generated containing the different characters of the videogame.

CharacterData
e)| * Mainba
Chasacter Data . > CharacterAtributtes
> Weapons
> Weapons N Array elements . Controller
IsControlled > IsControlled
“ > CameraData
Camera Data) n Mesh Data
- > Mesh
Mesh AnimationBlueprint
> PushbackMontages
D> Pushback Montages N Array elements <+ @ © > FbeaCkM Ontag es
> Flyback Montages N Array elements +mo > Jump M Ontages
> Jump Montages N Array elements +0Wo > RdatiVETran Sform
Animation Blueprint «P+X0 - AI Data
> AlData
> Relative Transform . Othe r Da.ta
. _ > CustomComponents
Al Data
> Actor Components N Array elements
Figure 3 - Representation of CharacterData variables

Table 1 below shows all the variables broken down, together with their type and a
description.

Variable Type Description
CharacterAtributtes* CharacterData DataAsset that has all the status attributes of a character
(health, movement speed, gravity, etc.).

Weapons* WeaponData DataAsset that has all the attributes with respect to a
[0..*] weapon that a character may possess.
IsControlled Bool Bool that determines if the caracter is controlled by a
player.
CameraData* CameraData DataAsset with all the attributes of the character's
camera in case the character is controlled by the player.
Mesh* SkeletalMesh SkeletalMesh of the character.
PushbackMontages* AnimMontage Montages for when you initiate a Pushback.
[0...%]
FlybackMontages* AnimMontage Montages for when starting a Flyback.
[0...%]

AnimationBlueprint* AnimBlueprint

AnimationBlueprint of the character, with all the logic
and variables for transitions between states and
locomotion system.

RelativeTransform Transform

RelativeTransform of the character's SkeletalMesh.

AlData* AlData

DataAsset that has all the parameters and conditions of
the character's Al in case it is not controlled by the

player.

ActorComponents* ActorComponent Additional components for the actor.

[0..*]

Table 1 - CharacterData variables

Character Atributtes

CharacterAtributtes is a DataAsset containing all the character state attributes. The
parameters of this variable are categorized into three types:

= Basic Variables

> Health, endurance.

= Motion variables

> Walking speed, running speed, friction, etc.

= Healing variables

> Healing speed, maximum amount of healed health, etc.

Table 2 below shows all the variables broken down, together with their type and

description.
Variable Type Description
Health float Float that determines the character's health.
Resistance float Float that determines the character's resistance to
damage.
WalkingSpeed float Float that determines the walking speed of the
CharacterMovement.
RunningSpeed float Float that determines the running speed of the
CharacterMovement.
GravityScale float Float that determines how much impact gravity has on
the character.
MaxAcceleration float Float that determines the maximum acceleration of
the CharacterMovement.
GroundFriction float Float that determines the friction with other static
elements.
AutoHeal bool Bool that defines if the character receives a self-

healing.

AutoHealMaxHealthPercentage float

Float that determines the maximum percentage of
health at which the character can heal.

AutoHealWaitTime float Float that determines the waiting time from when the
character received the last damage until it starts
healing.

AutoHealSpeed float Float that determines the speed at which health

IECOVers.

Table 2 - CharacterAtributtes variables

10

Weapon Data

WeaponData is a DataAsset that contains all the parameters of a weapon. The
parameters of this variable are categorized into four types:

= Basic variables
> Type of weapon (firearm or melee).
= Shooting variables
> Magazine size, cadence, etc.
= Appearance variables
> Mesh, attack particles, etc.
= Positioning variables
> Socket name, transform offset.

Table 3 shows all the variables broken down, together with their type and description.

Variable Type Description

WeaponType EWeaponType Enumerator that determines the type of weapon.

BulletData BulletData* DataAsset that determines the characteristics of
the instantiated bullet.

BulletsToShoot int Integer that determines the number of bullets per
shot (1 in the case of a pistol, several in the case
of a shotgun).

MagazineSize int Integer that determines the size of a magazine.

Cadency float Float that determines the rate of fire of the
weapon.

Accurancy float Float that determines the dispersion of each shot.

WeaponGripType EWeaponGripType Enumerator that determines the type of grip.

Mesh SkeletalMeshComponent* SkeletalMesh of the weapon.

AttackMontages AnimMontage* [0...*] Montages of the attacks.

AttackParticles AnimParticles* [0...*] Particles of the attacks.

ReloadMontages AnimMontages* [0...*] Montages of reload.

MainHand EHandType Enumerator that determines the hand with which
the weapon is held.

HandSocketName FString Name of the socket holding the weapon.

TransformOffset FTransform Transform of the weapon with respect to the
socket.

Table 3 - WeaponData variables

Table 3 shows three enumerator type variables. The possible values in them are as
follows.

EWeaponType EWeaponGripType EHandType
Melee None Left
Firearm One-Handed Right
Two-Handed Both

Dual-Wielding

11

Bullet Data

BulletData is a data structure that contains all the parameters of a shot coming from a
gun. The parameters of this variable are categorized into three types:

= Basic variables
> Bullet type, damage.
= Stun variables
> Stun time, amount of pushback, etc.

Table 4 below shows all the variables broken down, together with their type and
description.

Variable Type Description

BulletType EBulletType Enumerator that determines the type of bullet/shot.

Damage float Float that determines the damage inflicted by the weapon to
other characters.

StunTime float Float that determines how long the actor that has been shot is
stunned.

PushbackQuantity float Float that determines the amount of thrust the shot has against
the actor hit.

PushbackTime float Float that determines the amount of time that the thrust of the

shot lasts against the hit actor.

Table 4 - BulletData variables

Table 4 shows an enumerator type variable. The possible values are listed below.

EWeaponType
LineTrace
BulletInstance

For bullets that are not raycasted, a Bullet class will be required, which receives as
parameter the DataAsset of BulletData type to initialize the corresponding variables and will
also require an OnHit delegate, so that when it detects an actor that implements the
HIiCharacterinterface interface, it calls the TakeDamage function.

Figure 4 shows the delegate and the call to the TakeDamage function of the impacted
actor.

e 7

f akeDamage

Branch z
True —)f
ondaition Se 1 A CH(

Figure 4 - Bullet OnHit delegate

12

Attack Particles

AttackParticles is a data structure containing all the parameters corresponding to the
particle system of an attack. The parameters of this variable are categorized into two types:

= Basic variables
> Particle system
= Positioning variables
> Name of the socket to which the particle is anchored, transform with respect to
the area in which it is located, etc.

Table 5 below shows all the variables broken down, together with their type and
description.

Variable Type Description
ParticleEmitter NiagaraSystem Niagara particle system to instantiate.
SocketName FString Name of the socket to which the particle is
attached.

AttachToSocket bool Bool that determines if the particle is anchored
to the socket.

RelativeTransform FTransform Transform with respect to the zone in which the

particle system is instantiated.

Table 5 - AttackParticles variables

When calling the attack function, the system can be called to one of the particle systems
of the AttackParticles array.

Camera Data

CameraData is a DataAsset that contains all the parameters corresponding to the
camera. This DataAsset will only be needed in case the character is controlled by the player.
The parameters of this variable are categorized into two types:

= Basic variables

> Camera type, camera configuration.
= Positioning and movement variables

> Use of a SpringArm, length.

Variable Type Description
CameraType ECameraType Type of camera to be used by the actor.
NormalCameraData NormalCameraData* DataAsset with all the settings of the normal

camera if used.
CinematicCameraData CinematicCameraData* DataAsset with all the settings of the cinema
camera in case it is the one used.

UseSpringArm bool Bool that determines if the camera is
anchored to a SpringArm.

SpringArmData SpringArmData* DataAsset with all SpringArm settings if
used.

Table 6 - CameraData variables

Table 6 shows three DataAssets that will not have their own section, since their
implementation only requires copying and implementing the variables of the component to

13

which they refer. On the other hand, an enumerator type variable is shown. The possible values
are shown below.

ECameraType
NormalCamera
CinematicCamera

Al Data

AlData is a DataAsset that contains all the parameters regarding the actor's Al. The
parameters of this variable are categorized into two types:

= Basic variables

> Al controller, reference to Blackboard and BehaviorTree.
= Perception variables

> Parameters of the AlPerception component.

Table 7 below shows all the variables broken down, together with their type and
description.

Variable Type Description
AlController AlController* Al Controller.
Blackboard Blackboard* Al Blackboard.
BehaviorTree BehaviorTree* BehaviorTree with Al behavior and decisions.
UseAlPerception bool Bool that determines if the Unreal Engine AlPerception

component is used.
AlPerceptionData AlPerceptionData* DataAsset with all the AlPerception settings if used.

Table 7 - AlData variables

Table 7 shows a DataAsset that will not have its own section, since its implementation
only requires copying and implementing the variables of the component to which it refers.

14

Actor Implementation

This section will detail the implementation of the character creation system in Unreal
Engine.

Construction Script

In the ConstructionScript is where the parameters of the character will be initialized in
order to preview it in the editor.

First, the row of the DataTable with the configuration of the character will be read and
the data will be stored in a structure (private variable). This structure is where all the variables
will be obtained and updated. From this point on, the reference to the DataTable row will not
be necessary.

Secondly, the character will be configured. For this purpose, this configuration will be
divided into 5 different functions:

= SetupController
> Configures the PlayerController settings. If used, the camera settings will be
configured.
= SetupWeaponry
> Configures the character's arsenal, the weapon equipped and will initialize each
weapon.
= SetupMesh
> Configure all SkeletalMesh parameters and animations.
= SetupAl
> Configure the Al in case you use one.
= SetupCustomComponents
> Add the extra components.

Figure 5 shows the scheme to be followed in Blueprints format.

SetupController
SetupWeaponry
SetupMesh l

g N

lConstructiouScript ReadDataTable

Sequence

Y
Y

(SetupCustomC01111)ouentq

Figure 5 - ConstructionScript, Blueprint diagram

15

Custom Events

When creating a character, it is normal that the need arises for the design to create
specific actions for that character. A dash, a custom jump, a specific type of attack. All these
actions will be managed by creating a C++ UODbject called CustomEvent, which has an
implementable function in Blueprints called ExecuteCustomEvent.

N\ g
ﬁExecmeCustomEvent 6nplemenmmon del desarrollador

L e 5

Figure 6 - ExecuteCustomEvent implementation

All the logic of the custom functions will be located in the ExecuteCustomEvent
function. On the other hand, this custom event must be called from somewhere. To do this, a
macro called CallCustomEvent will be created to receive a variable of type CustomEventClass
which will be the event to be called. In addition, it will have two outputs: Execute (the basic
one) and OnFinished (which is called at the end of the event execution).

4 : Py (. A /
ﬁnﬂtustom]:,\'ent ExecuteCustomEvent (from class)

Y

CustomEventClass CustomEventClass

J o

Figure 7 - CallCustomEvent implementation

This static function will be called in the PlayerController in the case of being an actor
controlled by the player.

On the other hand, for Als, a Task named ExecuteAlCustomEvent will be created,
which will receive a variable of type CustomEventClass and will call the static function
CallCustomEvent, introducing the variable received by the Task. Once this is done, the
designers, when creating a character, will prototype in Blueprints by means of the
CustomEvents the concrete actions of the character and will call them in the PlayerController
or the BehaviorTree.

7 I
Root
L N ¢ .
-
Sequence 2
L »,
Y

(Execute;ﬂ CustomEvent

L CustomEventClass J

Figure 8 - ExecutieAlCustomEvent, behavior tree example

16

However, designers are free to implement their own Tasks to be called in
BehaviorTrees, as long as the structure of Figure 9 is followed.

ExecuteAl CallCustomEvent 2
FinishExecute

CustomEventClass OnFinished LJ
_J

Figure 9 - Custom Task implementation

ExecuteCustomEvent

Custom events have a series of parameters to be taken into account, which encompass the
possible types of actions. These attributes are referenced in Table 8 below.

Variable Type Description
CasterReference Actor* Reference to the actor who called the event.
Duration float Duration of the event.

AppliedEffectQuantity float Amount of effect applied: damage, healing, etc.

Table 8 - ExecuteCustomEvent variables

CallCustomEvent

The macro named CallCustomEvent must replicate the same parameters as the
ExecuteCustomEvent event, plus the reference to the class of the event to be invoked. These attributes
are referenced in Table 9 below.

Variable Type Description
CustomEvent CustomEventClass* Reference to the class of the event to be invoked.
CasterReference Actor* Reference to the actor that called the event.
Duration float Duration of the event.
AppliedEffectQuantity float Amount of the applied effect: damage, healing...

Table 9 - CallCustomEvent variables

CallAlCustomEvent

The Task of a BehaviorTree that calls a CustomEvent must replicate the same parameters as
the ExecuteCustomEvent event, plus the reference to the class of the event to be invoked. These
attributes are referenced in Table 10 below. The reference to the actor that calls the event will be
referenced within the Blueprint itself.

Variable Type Description
CustomEvent CustomEventClass* Reference to the class of the event to be
invoked.
Duration float Duration of the event.
AppliedEffectQuantity float Amount of the applied effect: damage, healing...

Table 10 - CallAlCustomEvent variables

Actors with Player Controller

The actors that have a PlayerController, will implement their actions in response to the
different inputs from the player. From the PlayerController Blueprint, when an input is
detected, a call will be made to the macro CallCustomEvent and the desired action will be
introduced (once it is created).

17

Actors without Player Controller

As mentioned in the CustomEvents section, actors that do not have a PlayerController
will call their respective events in their BehaviorTree.

There are two ways in which a developer can call their CustomEvent in the
BehaviorTree.

1. Calling the Task named CallAlCustomEvent.
2. Creating a custom Task that calls the macro CallCustomEvent.

In this way, there is a great deal of freedom for the development of behaviors by both
programming and design.

18

Pipeline

When working with this system, a series of 6 steps must be followed, as long as a
character is being created from scratch.

The steps to be followed by the team once the art part of the character is finished are:

1. Import Meshes
a. The model made by the art department must be imported.
b. Its skeleton and animations must be included.

2. Generate AnimBlueprints and develop Animation Montages
a. As aresult of the model and its animations, the AnimBlueprint of the character
will be generated, where the transitions to its different states will be managed.
b. Montages of animations such as attacks, jumps, etc. will be performed.

3. Create a DataAsset that inherits from CharacterData
a. A DataAsset that inherits from CharacterData will be created.

4. Implementing new CustomEvents and behaviors
a. It will not always be necessary to create a new CustomEvent.
b. Depending on whether it is a controlled character or not, the actions will be
implemented in the BehaviorTree or in the PlayerController.

5. Adjusting the character's DataAsset values
a. The value of the parameters mentioned in the Variables section will be
configured.

6. Add DataAsset to the character
a. The character settings will be added to the desired actor.

Depending on the status of the character, it may not be necessary to complete all of the
above steps. For example, if the character is in an advanced state, but an animation has been
modified, only steps 1 and 5 will be necessary.

Figure 10 below shows a schematic of the working pipeline for the use of this system
and the creation of characters.

19

PIPELINE

Import Meshes

Generate Anim
Blueprints & Montages

Create a new row of the
CharacterData data table

~— Implement

CustomEvents

Adjust values of the
row created in the data
table

Add data table row to the
character

Figure 10 - Pipeline

20

Annexes and References

Simulation of the system using Data Tables.

Enemy detection systems, Werewolf attributes and Encounters.

Where is each Combat/Systems attribute?

21

https://docs.google.com/spreadsheets/d/1utaUeeIQmFuR2cDQxWkPoPE18zaAjv3cFZg_IQzPF6g/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1hoBvzBB5f0--3Orl9VJgnujU7hH6ZBPT/edit?usp=sharing&ouid=110594395442931051473&rtpof=true&sd=true
https://excellent-pen-049.notion.site/D-nde-est-cada-atributo-de-Combate-Sistemas-ae60ab6228804144aadf406c0aa368e1

