

DATA-DRIVEN

CHARACTER SYSTEM

Germán López Gutiérrez

2

Content

Motivation ... 5

System Development .. 7

Variables ... 9

Character Data .. 9

Character Atributtes .. 10

Weapon Data ... 11

Bullet Data .. 12

Attack Particles ... 13

Camera Data .. 13

AI Data .. 14

 Actor Implementation .. 15

Construction Script ... 15

Custom Events .. 16

ExecuteCustomEvent .. 17

CallCustomEvent .. 17

CallAICustomEvent .. 17

Actors with Player Controller ... 17

Actors without Player Controller .. 18

Pipeline ... 19

 Annexes and References .. 21

3

Figures

Figure 1 - Inheritance system for the characters .. 5

Figure 2 - Data-Driven System UML Diagram .. 8

Figure 3 - Representation of CharacterData variables .. 9

Figure 4 - Bullet OnHit delegate ... 12

Figure 5 - ConstructionScript, Blueprint diagram .. 15

Figure 6 - ExecuteCustomEvent implementation ... 16

Figure 7 - CallCustomEvent implementation ... 16

Figure 8 - ExecutieAICustomEvent, behavior tree example .. 16

Figure 9 - Custom Task implementation... 17

Figure 10 - Pipeline ... 20

file:///C:/Users/Gerlogu/Desktop/⠀/Germán/CharacterSystem-EN.docx%23_Toc119184552
file:///C:/Users/Gerlogu/Desktop/⠀/Germán/CharacterSystem-EN.docx%23_Toc119184553
file:///C:/Users/Gerlogu/Desktop/⠀/Germán/CharacterSystem-EN.docx%23_Toc119184560

4

Tables

Table 1 - CharacterData variables ... 10

Table 2 - CharacterAtributtes variables .. 10

Table 3 - WeaponData variables ... 11

Table 4 - BulletData variables .. 12

Table 5 - AttackParticles variables ... 13

Table 6 - CameraData variables .. 13

Table 7 - AIData variables .. 14

Table 8 - ExecuteCustomEvent variables ... 17

Table 9 - CallCustomEvent variables ... 17

Table 10 - CallAICustomEvent variables ... 17

5

Motivation

Currently, for the coding of the characters in Howl of Iron we have made use of a hierarchy

based on inheritance, where there is a HICharacter that inherits from the default Character class of

Unreal Engine 4. This HICharacter class is the one that contains the common functions and variables

for all the characters in the game, such as life or movement speed.

From this class, the HIWerewolf actor (the player-controlled character) and the HIEnemy class

are born. This last class is the one that gives rise to the different enemies in the game, and it is the one

that contains the specific functions and variables of the enemies.

A UML diagram with the different branches is shown in Figure 1 below.

Figure 1 - Inheritance system for the characters

However, the use of this system has led to the following problems:

▪ Variables scattered in different locations.

› As all the variables of the characters are not included in a single place (either in a

DataTable or in a DataAsset), as they are specific to the parent class or unique to the

different children, this has caused that there is not a single place where the variables

are located, complicating the design work.

› Currently there are 150 variables in 32 different places (More information here).

▪ Limitation in prototyping

› Many of the character behaviors are programmed in C++.

› While, many of the events are called in Blueprints, there are a number of conditions

between parents and children. These problems are mainly found in the development of

the AI since, as Unreal Engine components such as AI Perception are not being used

as a base, this complicates the prototyping of a new character, always requiring the

support of a programmer to make a character from scratch.

6

For these reasons, this document proposes a partially different system, where a Data-Driven

workflow will be followed, but keeping some of the characteristics of the current system.

For this purpose, the characteristics of this system will be discussed below, followed by its

implementation and, finally, analyzing the Pipeline to be followed for this new system together with

different practical examples.

7

System Development

 This system requires the creation of the following variables by the programming team:

▪ CharacterData (DataTable)

› DataTable with all the attributes that make up a character.

› The actor has a public variable that receives a reference to the DataTable containing

the parameters, which are processed in the ConstructionScript giving rise to the

character in question.

▪ CharacterAtributtes (DataAsset)

› DataAsset that possesses all the status attributes of a character (health, movement

speed, gravity, etc.).

▪ WeaponData (DataAsset)

› DataAsset that has all the attributes with respect to a weapon that a character may

possess.

▪ EWeaponType (Enum)

› Enumerator representing the type of weapon to be used.

› States: Melee, Firearm

▪ EWeaponGripType (Enum)

› Enumerator representing the handling of the weapon.

› States: None, One-Handed, Two-Handed, Dual-Wielding

▪ EHandType (Enum)

› Enumerator representing the hand with which the actor grasps the weapon.

› States: Left, Right, Both

▪ BulletData (DataAsset)

› DataAsset that has all the attributes relating to a firearm bullet.

▪ EBulletType (Enum)

› Enumerator representing the type of bullet used by the weapon to detect enemies.

› Estados: LineTrace, BulletInstance

▪ AttackParticles (Structure)

› Data structure containing all the attributes of a particle system.

▪ CameraData (DataAsset)

› DataAsset with all the attributes of the character's camera in case the character is

controlled by the player.

▪ ECameraType (Enum)

› Enumerator representing the type of camera implemented by the actor.

› States: NormalCamera, CinematicCamera

▪ NormalCameraData (DataAsset)

› DataAsset with the attributes of the normal camera.

▪ CinematicCameraData (DataAsset)

› DataAsset with film camera attributes.

▪ SpringArmData (DataAsset)

› DataAsset with the attributes of the camera arm.

▪ AIData (DataAsset)

› DataAsset that has all the parameters and conditions of the character's AI in case it is

not controlled by the player.

▪ AIPerceptionData (DataAsset)

› DataAsset that contains all the information concerning the AISense component of the

AI.

8

An HICharacter class will be generated that will implement an

HICharacterInterface interface that will contain all the basic functions (public

and private) of the actor.

This class will have a public variable CharacterID of type

DataTableRowHandle that will receive the reference to the row of the

DataTable where the desired character is located.

In addition, there will be a private variable CharacterData that will contain all

the parameters of the character. This structure will be initialized in the

ConstructionScript in order not to read the DataTable every time a variable is

needed.

 Within the parameters that exist in the DataTable, there are references

to a hierarchy of DataAssets that serve to categorize the large number of

variables that make up this system.

 In the diagram, the "..." represent that the DataAsset contains all the

parameters corresponding to the component to which it refers.

 In addition, a representation of the operation of the system and the

DataTable has been made in Excel.

CHECK OUT EXCEL EXAMPLE

Figure 2 - Data-Driven System UML Diagram

https://docs.google.com/spreadsheets/d/1utaUeeIQmFuR2cDQxWkPoPE18zaAjv3cFZg_IQzPF6g/edit?usp=sharing

9

Variables
Character Data

 CharacterData is a data structure that contains all the variables of a character. From this

structure a DataTable will be generated containing the different characters of the videogame.

Table 1 below shows all the variables broken down, together with their type and a

description.

Variable Type Description
CharacterAtributtes* CharacterData DataAsset that has all the status attributes of a character

(health, movement speed, gravity, etc.).

Weapons* WeaponData

[0...*]

DataAsset that has all the attributes with respect to a

weapon that a character may possess.

IsControlled Bool Bool that determines if the carácter is controlled by a

player.

CameraData* CameraData DataAsset with all the attributes of the character's

camera in case the character is controlled by the player.

Mesh* SkeletalMesh SkeletalMesh of the character.

PushbackMontages* AnimMontage

[0...*]

Montages for when you initiate a Pushback.

FlybackMontages* AnimMontage

[0...*]

Montages for when starting a Flyback.

▪ Main Data

› CharacterAtributtes

› Weapons

▪ Controller

› IsControlled

› CameraData

▪ Mesh Data

› Mesh

› AnimationBlueprint

› PushbackMontages

› FlybackMontages

› JumpMontages

› RelativeTransform

▪ AI Data

› AIData

▪ Other Data

› CustomComponents

Figure 3 - Representation of CharacterData variables

10

AnimationBlueprint* AnimBlueprint AnimationBlueprint of the character, with all the logic

and variables for transitions between states and

locomotion system.

RelativeTransform Transform RelativeTransform of the character's SkeletalMesh.

AIData* AIData DataAsset that has all the parameters and conditions of

the character's AI in case it is not controlled by the

player.

ActorComponents* ActorComponent

[0...*]

Additional components for the actor.

Table 1 - CharacterData variables

Character Atributtes

CharacterAtributtes is a DataAsset containing all the character state attributes. The

parameters of this variable are categorized into three types:

▪ Basic Variables

› Health, endurance.

▪ Motion variables

› Walking speed, running speed, friction, etc.

▪ Healing variables

› Healing speed, maximum amount of healed health, etc.

Table 2 below shows all the variables broken down, together with their type and

description.

Variable Type Description

Health float Float that determines the character's health.

Resistance float Float that determines the character's resistance to

damage.

WalkingSpeed float Float that determines the walking speed of the

CharacterMovement.

RunningSpeed float Float that determines the running speed of the

CharacterMovement.

GravityScale float Float that determines how much impact gravity has on

the character.

MaxAcceleration float Float that determines the maximum acceleration of

the CharacterMovement.

GroundFriction float Float that determines the friction with other static

elements.

AutoHeal bool Bool that defines if the character receives a self-

healing.

AutoHealMaxHealthPercentage float Float that determines the maximum percentage of

health at which the character can heal.

AutoHealWaitTime float Float that determines the waiting time from when the

character received the last damage until it starts

healing.

AutoHealSpeed float Float that determines the speed at which health

recovers.

Table 2 - CharacterAtributtes variables

11

Weapon Data

WeaponData is a DataAsset that contains all the parameters of a weapon. The

parameters of this variable are categorized into four types:

▪ Basic variables

› Type of weapon (firearm or melee).

▪ Shooting variables

› Magazine size, cadence, etc.

▪ Appearance variables

› Mesh, attack particles, etc.

▪ Positioning variables

› Socket name, transform offset.

Table 3 shows all the variables broken down, together with their type and description.

Table 3 shows three enumerator type variables. The possible values in them are as

follows.

Variable Type Description
WeaponType EWeaponType Enumerator that determines the type of weapon.

BulletData BulletData* DataAsset that determines the characteristics of

the instantiated bullet.

BulletsToShoot int Integer that determines the number of bullets per

shot (1 in the case of a pistol, several in the case

of a shotgun).

MagazineSize int Integer that determines the size of a magazine.

Cadency float Float that determines the rate of fire of the

weapon.

Accurancy float Float that determines the dispersion of each shot.

WeaponGripType EWeaponGripType Enumerator that determines the type of grip.

Mesh SkeletalMeshComponent* SkeletalMesh of the weapon.

AttackMontages AnimMontage* [0...*] Montages of the attacks.

AttackParticles AnimParticles* [0...*] Particles of the attacks.

ReloadMontages AnimMontages* [0...*] Montages of reload.

MainHand EHandType Enumerator that determines the hand with which

the weapon is held.

HandSocketName FString Name of the socket holding the weapon.

TransformOffset FTransform Transform of the weapon with respect to the

socket.

Table 3 - WeaponData variables

EWeaponType
Melee

Firearm

EWeaponGripType
None

One-Handed

Two-Handed

Dual-Wielding

EHandType
Left

Right

Both

12

Bullet Data

BulletData is a data structure that contains all the parameters of a shot coming from a

gun. The parameters of this variable are categorized into three types:

▪ Basic variables

› Bullet type, damage.

▪ Stun variables

› Stun time, amount of pushback, etc.

Table 4 below shows all the variables broken down, together with their type and

description.

Variable Type Description
BulletType EBulletType Enumerator that determines the type of bullet/shot.

Damage float Float that determines the damage inflicted by the weapon to

other characters.

StunTime float Float that determines how long the actor that has been shot is

stunned.

PushbackQuantity float Float that determines the amount of thrust the shot has against

the actor hit.

PushbackTime float Float that determines the amount of time that the thrust of the

shot lasts against the hit actor.

Table 4 - BulletData variables

 Table 4 shows an enumerator type variable. The possible values are listed below.

For bullets that are not raycasted, a Bullet class will be required, which receives as

parameter the DataAsset of BulletData type to initialize the corresponding variables and will

also require an OnHit delegate, so that when it detects an actor that implements the

HICharacterInterface interface, it calls the TakeDamage function.

 Figure 4 shows the delegate and the call to the TakeDamage function of the impacted

actor.

Figure 4 - Bullet OnHit delegate

EWeaponType
LineTrace

BulletInstance

13

Attack Particles

AttackParticles is a data structure containing all the parameters corresponding to the

particle system of an attack. The parameters of this variable are categorized into two types:

▪ Basic variables

› Particle system

▪ Positioning variables

› Name of the socket to which the particle is anchored, transform with respect to

the area in which it is located, etc.

Table 5 below shows all the variables broken down, together with their type and

description.

When calling the attack function, the system can be called to one of the particle systems

of the AttackParticles array.

Camera Data

CameraData is a DataAsset that contains all the parameters corresponding to the

camera. This DataAsset will only be needed in case the character is controlled by the player.

The parameters of this variable are categorized into two types:

▪ Basic variables

› Camera type, camera configuration.

▪ Positioning and movement variables

› Use of a SpringArm, length.

 Table 6 shows three DataAssets that will not have their own section, since their

implementation only requires copying and implementing the variables of the component to

Variable Type Description
ParticleEmitter NiagaraSystem Niagara particle system to instantiate.

SocketName FString Name of the socket to which the particle is

attached.

AttachToSocket bool Bool that determines if the particle is anchored

to the socket.

RelativeTransform FTransform Transform with respect to the zone in which the

particle system is instantiated.

Table 5 - AttackParticles variables

Variable Type Description
CameraType ECameraType Type of camera to be used by the actor.

NormalCameraData NormalCameraData* DataAsset with all the settings of the normal

camera if used.

CinematicCameraData CinematicCameraData* DataAsset with all the settings of the cinema

camera in case it is the one used.

UseSpringArm bool Bool that determines if the camera is

anchored to a SpringArm.

SpringArmData SpringArmData* DataAsset with all SpringArm settings if

used.

Table 6 - CameraData variables

14

which they refer. On the other hand, an enumerator type variable is shown. The possible values

are shown below.

AI Data

AIData is a DataAsset that contains all the parameters regarding the actor's AI. The

parameters of this variable are categorized into two types:

▪ Basic variables

› AI controller, reference to Blackboard and BehaviorTree.

▪ Perception variables

› Parameters of the AIPerception component.

Table 7 below shows all the variables broken down, together with their type and

description.

Variable Type Description
AIController AIController* AI Controller.

Blackboard Blackboard* AI Blackboard.

BehaviorTree BehaviorTree* BehaviorTree with AI behavior and decisions.

UseAIPerception bool Bool that determines if the Unreal Engine AIPerception

component is used.

AIPerceptionData AIPerceptionData* DataAsset with all the AIPerception settings if used.

Table 7 - AIData variables

 Table 7 shows a DataAsset that will not have its own section, since its implementation

only requires copying and implementing the variables of the component to which it refers.

ECameraType
NormalCamera

CinematicCamera

15

 Actor Implementation

This section will detail the implementation of the character creation system in Unreal

Engine.

Construction Script
In the ConstructionScript is where the parameters of the character will be initialized in

order to preview it in the editor.

First, the row of the DataTable with the configuration of the character will be read and

the data will be stored in a structure (private variable). This structure is where all the variables

will be obtained and updated. From this point on, the reference to the DataTable row will not

be necessary.

Secondly, the character will be configured. For this purpose, this configuration will be

divided into 5 different functions:

▪ SetupController

› Configures the PlayerController settings. If used, the camera settings will be

configured.

▪ SetupWeaponry

› Configures the character's arsenal, the weapon equipped and will initialize each

weapon.

▪ SetupMesh

› Configure all SkeletalMesh parameters and animations.

▪ SetupAI

› Configure the AI in case you use one.

▪ SetupCustomComponents

› Add the extra components.

Figure 5 shows the scheme to be followed in Blueprints format.

Figure 5 - ConstructionScript, Blueprint diagram

16

Custom Events
When creating a character, it is normal that the need arises for the design to create

specific actions for that character. A dash, a custom jump, a specific type of attack. All these

actions will be managed by creating a C++ UObject called CustomEvent, which has an

implementable function in Blueprints called ExecuteCustomEvent.

Figure 6 - ExecuteCustomEvent implementation

All the logic of the custom functions will be located in the ExecuteCustomEvent

function. On the other hand, this custom event must be called from somewhere. To do this, a

macro called CallCustomEvent will be created to receive a variable of type CustomEventClass

which will be the event to be called. In addition, it will have two outputs: Execute (the basic

one) and OnFinished (which is called at the end of the event execution).

Figure 7 - CallCustomEvent implementation

This static function will be called in the PlayerController in the case of being an actor

controlled by the player.

On the other hand, for AIs, a Task named ExecuteAICustomEvent will be created,

which will receive a variable of type CustomEventClass and will call the static function

CallCustomEvent, introducing the variable received by the Task. Once this is done, the

designers, when creating a character, will prototype in Blueprints by means of the

CustomEvents the concrete actions of the character and will call them in the PlayerController

or the BehaviorTree.

Figure 8 - ExecutieAICustomEvent, behavior tree example

17

 However, designers are free to implement their own Tasks to be called in

BehaviorTrees, as long as the structure of Figure 9 is followed.

Figure 9 - Custom Task implementation

ExecuteCustomEvent
Custom events have a series of parameters to be taken into account, which encompass the

possible types of actions. These attributes are referenced in Table 8 below.

CallCustomEvent
The macro named CallCustomEvent must replicate the same parameters as the

ExecuteCustomEvent event, plus the reference to the class of the event to be invoked. These attributes

are referenced in Table 9 below.

CallAICustomEvent
The Task of a BehaviorTree that calls a CustomEvent must replicate the same parameters as

the ExecuteCustomEvent event, plus the reference to the class of the event to be invoked. These

attributes are referenced in Table 10 below. The reference to the actor that calls the event will be

referenced within the Blueprint itself.

Actors with Player Controller
The actors that have a PlayerController, will implement their actions in response to the

different inputs from the player. From the PlayerController Blueprint, when an input is

detected, a call will be made to the macro CallCustomEvent and the desired action will be

introduced (once it is created).

Variable Type Description
CasterReference Actor* Reference to the actor who called the event.

Duration float Duration of the event.

AppliedEffectQuantity float Amount of effect applied: damage, healing, etc.

Table 8 - ExecuteCustomEvent variables

Variable Type Description
CustomEvent CustomEventClass* Reference to the class of the event to be invoked.

CasterReference Actor* Reference to the actor that called the event.

Duration float Duration of the event.

AppliedEffectQuantity float Amount of the applied effect: damage, healing...

Table 9 - CallCustomEvent variables

Variable Type Description
CustomEvent CustomEventClass* Reference to the class of the event to be

invoked.

Duration float Duration of the event.

AppliedEffectQuantity float Amount of the applied effect: damage, healing...

Table 10 - CallAICustomEvent variables

18

Actors without Player Controller
As mentioned in the CustomEvents section, actors that do not have a PlayerController

will call their respective events in their BehaviorTree.

There are two ways in which a developer can call their CustomEvent in the

BehaviorTree.

1. Calling the Task named CallAICustomEvent.

2. Creating a custom Task that calls the macro CallCustomEvent.

In this way, there is a great deal of freedom for the development of behaviors by both

programming and design.

19

Pipeline

When working with this system, a series of 6 steps must be followed, as long as a

character is being created from scratch.

The steps to be followed by the team once the art part of the character is finished are:

1. Import Meshes

a. The model made by the art department must be imported.

b. Its skeleton and animations must be included.

2. Generate AnimBlueprints and develop Animation Montages

a. As a result of the model and its animations, the AnimBlueprint of the character

will be generated, where the transitions to its different states will be managed.

b. Montages of animations such as attacks, jumps, etc. will be performed.

3. Create a DataAsset that inherits from CharacterData

a. A DataAsset that inherits from CharacterData will be created.

4. Implementing new CustomEvents and behaviors

a. It will not always be necessary to create a new CustomEvent.

b. Depending on whether it is a controlled character or not, the actions will be

implemented in the BehaviorTree or in the PlayerController.

5. Adjusting the character's DataAsset values

a. The value of the parameters mentioned in the Variables section will be

configured.

6. Add DataAsset to the character

a. The character settings will be added to the desired actor.

Depending on the status of the character, it may not be necessary to complete all of the

above steps. For example, if the character is in an advanced state, but an animation has been

modified, only steps 1 and 5 will be necessary.

Figure 10 below shows a schematic of the working pipeline for the use of this system

and the creation of characters.

20

Figure 10 - Pipeline

21

 Annexes and References

Simulation of the system using Data Tables.

Enemy detection systems, Werewolf attributes and Encounters.

Where is each Combat/Systems attribute?

https://docs.google.com/spreadsheets/d/1utaUeeIQmFuR2cDQxWkPoPE18zaAjv3cFZg_IQzPF6g/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1hoBvzBB5f0--3Orl9VJgnujU7hH6ZBPT/edit?usp=sharing&ouid=110594395442931051473&rtpof=true&sd=true
https://excellent-pen-049.notion.site/D-nde-est-cada-atributo-de-Combate-Sistemas-ae60ab6228804144aadf406c0aa368e1

